
Visma on AWS
Release/deployment

Håkon Eriksen Drange
hakon.drange@visma.com

mailto:hakon.drange@visma.com

Agenda

1. Introduction
2. Release strategy
3. Technology & architecture
4. AWS resource management strategy
5. Toolbox
6. Deployment workflow
7. Experiences
8. Future plans
9. Q&A

Introduction

About me

● Håkon Eriksen Drange
● Infrastructure Engineer
● Visma.net HRM program, team Payroll Management

About Visma.net

About Visma.net HRM

● 8 main services
● 15-ish teams
● About 160-ish people

About Visma.net HRM

● Small and large customer segments
● 1 - 6000 employees
● Eating our own dog food

About Visma.net HRM

● Consolidate legacy on-premise solutions to the modern SaaS offering
● Exponential growth in customer base

○ Customer migrations, acquisitions, new signups etc ..

Release strategy

Release strategy

● One predictable/fixed main release the first Tuesday every month
● Additional releases when necessary

○ Patches/bugfixes, specific functionality

● New functionality is feature toggled
● Continuous Delivery for microservices

○ Continuous deployment, feature toggle relevant functionality

Technology &
Architecture

Technology stack - present

● C# .NET framework 4.7.1
● EC2 instances, AWS Windows Server AMIs
● RDS Aurora MySQL

Technology stack - future

● C# .NET Core 2 framework
● Linux instances and containers
● RDS Aurora MySQL/PostgreSQL
● DynamoDB

Payroll architecture

● Payroll consists of 4 application tiers in separate Auto Scaling Groups:
○ Web (t2.2xlarge)
○ Worker (t2.2xlarge)
○ Worker-MQ (c5.xlarge)
○ Worker-Calculation (t2.2xlarge)

Payroll architecture

● Database: AWS RDS Aurora MySQL
○ Encryption at rest + snapshots

● ELBs/ALBs + AWS Certificate Manager
○ Encryption in transit

AWS resource management strategy

● One account per team per environment
○ InternalTest
○ Acceptance
○ Stage
○ Production
○ Dev/sandbox
○ Backup

AWS resource management strategy

● Cloudformation templates per tier and AWS resource/service
○ Web, Worker, Worker-MQ, Worker-Calculation
○ Core (VPC), ALB, BastionHost
○ CloudTrail, Config, GuardDuty
○ Route53, SNS, SSM
○ RDS

AWS resource management strategy

● Cloudformation templates per tier and AWS resource
● Environment specifics are defined in parameter files, templates completely

reusable

AWS resource management strategy

● Immutable infrastructure
● Fully baked AMIs

Image credit: https://aws.amazon.com/answers/configuration-management/aws-ami-design/

Toolbox

Toolbox

● VCS: Git
○ Bitbucket by Atlassian
○ Hosted in-house by Visma IT

Toolbox

● Continuous Integration: TeamCity
○ Jenkins equivalent
○ Proprietary offering by JetBrains
○ Hosted in-house by Visma IT

Toolbox

● Deployment: Octopus Deploy
○ A proprietary offering from the company .. Octopus Deploy
○ Hosted in-house by Visma IT

Toolbox - Octopus Deploy

Image credit: https://octopus.com/images/landing/(home)/feature-1.png

Toolbox - Octopus Deploy

Image credit: https://octopus.com/images/landing/(home)/feature-3.png

Toolbox - Octopus Deploy

Image credit: https://octopus.com/images/landing/(home)/feature-2.png

Toolbox - Octopus Deploy

● Centralized resource management on multiple AWS accounts
● Pre-defined action templates

○ OD + AWS Cloudformation + AWS Systems Manager
○ Developers does not need access to servers or AWS accounts to:

■ Check the status of or restart a service
■ Retrieve log files
■ Update a Cloudformation stack
■ Deploy something

Toolbox - Octopus Deploy

● OD AWSResources project
○ Creates or updates Cloudformation stacks for AWS resources independent of application
○ Core/VPC, RDS, SSM, GuardDuty etc.

● OD Application bootstrap project
○ Creates or updates Cloudformation stacks for each tier of applications
○ Starts temp instances for AMI baking
○ Cleans up resources

● OD Application instance setup project
○ Installs and configures instances
○ Roles applied to differentiate configurations for the different tiers

● OD RestartService project
○ Can trigger restart of services on specific instances or a group based on tags

Deployment workflow

Deployment workflow

git push Run test suite Build and upload
artifacts

Run bootstrap
project

Bake AMIUpdate
Cloudformation

Deployment
complete

AMI retention
cleanup

Notify
deployment

result

Deployment workflow - experiences

Pros:
● Full control, no manual changes, known state
● Safe, no custom bootstrapping at boot that can fail with full AMIs
● Fastest Auto Scaling with instances
● Easy to reuse same AMIs for temporary environments for debugging
● Easy to promote across environments and accounts

Deployment workflow - experiences

Cons:
● Deployments can take some time.

○ ~20 - 30 minutes per environment x 4 = ~2 hours to get a change to production
○ TeamCity CI process in addition

● Higher costs to build temporary + new resources every time
● At first glance, can look complicated

Future plans

● About 80% of all paychecks in Norway comes from a Visma system
● Goal: Visma.net HRM SaaS to replace all on premises solutions
● To support this we need must be upfront with architecture and infrastructure

Future plans

● Cloudformation rollback triggers
● EC2 SpotFleet/Fleet
● .NET Core 2.x on Linux

○ The services must be ready, work in progress
○ Massive cost reductions and modern tech

● Lightweight services deployed in containers
○ Deployment slightly quicker, scaling much faster

● Serverless
○ Candidates: async processes, generate wagerun, generate payslip etc.
○ First class citizen deployment pipeline for Lambda?

● DynamoDB
● Cloudfront

Questions?

Comments?

Also, we’re hiring!

visma.com/jointheambition

hakon.drange@visma.com

mailto:hakon.drange@visma.com

